# PyramidTNT: Improved Transformer-in-Transformer Baselines with Pyramid Architecture

Kai Han, Jianyuan Guo, Yehui Tang, Yunhe Wang Huawei Noah's Ark Lab



#### **Abstract**

Transformer networks have achieved great progress for computer vision tasks. Transformer-in-Transformer (TNT) architecture utilizes inner transformer and outer transformer to extract both local and global representations. In this work, we present new TNT baselines by introducing two advanced designs: 1) pyramid architecture, and 2) convolutional stem. The new ``PyramidTNT'' significantly improves the original TNT by establishing hierarchical representations. PyramidTNT achieves better performances than the previous state-of-the-art vision transformers such as Swin Transformer. We hope this new baseline will be helpful to the further research and application vision transformer. Code available is https://github.com/huawei-noah/CV-Backbones.

#### PyramidTNT Architecture



| $ \begin{array}{ c c c c c c } \hline Stage & Output size & PyramidTNT-Ti & PyramidTNT-S & PyramidTNT-M & PyramidTNT-B \\ \hline Stem & $\frac{H}{8} \times \frac{W}{8}$ & $Conv \times 5$ & $Conv \times 5$ & $Conv \times 5$ & $Conv \times 5$ \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                    |                      |                        |                         |                        |                         |                        |                     |                        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------|----------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|---------------------|------------------------|--|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stage          | Output size                        | Pyramid <sup>*</sup> | ΓNT-Ti                 | Pyramid                 | TNT-S                  | Pyramid <sup>*</sup>    | ГNТ-М                  | PyramidTNT-B        |                        |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stem           | $\frac{H}{8} \times \frac{W}{8}$   | Conv                 | ×5                     | Conv                    | $\times 5$             | Conv                    | $\times 5$             | Conv×5              |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                    |                      |                        |                         |                        |                         |                        |                     |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stage 1        | $H \vee W$                         | D = 80               | C = 5                  | D = 128                 | $\lceil C = 8 \rceil$  | D = 192                 | $\lceil C = 12 \rceil$ | [D = 256]           | $\lceil C = 16 \rceil$ |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stage 1        | 8 ^ 8                              | $H_o = 2 \times 2$   | $H_i = 1 \times 1$     | $H_o = 4 \times 2$      | $H_i = 2 \times 1$     | $H_o = 4 \times 2$      | $H_i = 2 \times 1$     | $H_o = 4 \times 2$  | $H_i = 2 \times 1$     |  |
| $ \begin{array}{ c c c c c c c c } Stage 2 & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                    | R = 4                | R = 1                  | R = 4                   | R = 1                  | R = 4                   | R = 1                  | R = 4               | R = 1                  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Downsample     | $\frac{H}{16} \times \frac{W}{16}$ | Patch M              | erging                 | Patch M                 | erging                 | Patch M                 | erging                 | Patch Mo            | erging                 |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                    |                      |                        |                         |                        |                         |                        |                     |                        |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stage 2        | $H \downarrow W$                   | D = 160              | C = 10                 | D = 256                 | $\lceil C = 16 \rceil$ | D = 384                 | $\lceil C = 24 \rceil$ | D = 512             | $\lceil C = 32 \rceil$ |  |
| $ \begin{array}{ c c c c c c c c c } \hline \text{Downsample} & \frac{H}{32} \times \frac{W}{32} & \text{Patch Merging} & Pa$ | Stage 2        | 16 ^ 16                            | $H_o = 4 \times 6$   | $H_i = 2 \times 1$     | $H_o = 8 \times 8$      | $H_i = 4 \times 2$     | $H_o = 8 \times 8$      | $H_i = 4 \times 2$     | $H_o = 8 \times 10$ | $H_i = 4 \times 2$     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                    | R=2                  | R = 1                  | R=2                     | R = 1                  | R = 2                   | R = 1                  | R=2                 | R = 1                  |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Downsample     | $\frac{H}{32} \times \frac{W}{32}$ | Patch M              | erging                 | Patch M                 | erging                 | Patch M                 | erging                 | Patch Merging       |                        |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                    |                      |                        |                         |                        |                         |                        |                     |                        |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stage 3        |                                    |                      | $\lceil C = 20 \rceil$ | $\lceil D = 512 \rceil$ | $\lceil C = 32 \rceil$ | $\lceil D = 768 \rceil$ | $\lceil C = 48 \rceil$ |                     | $\lceil C = 64 \rceil$ |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stage 5        |                                    | $H_o = 8 \times 3$   | $H_i = 4 \times 1$     | $H_o = 16 \times 4$     | $H_i = 8 \times 1$     | $H_o = 16 \times 6$     | $H_i = 8 \times 1$     | $H_o = 16 \times 6$ | $H_i = 8 \times 1$     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                    | R = 1                | R = 1                  | R = 1                   | R = 1                  | R = 1                   | R = 1                  | R = 1               |                        |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Downsample     | $\frac{H}{64} \times \frac{W}{64}$ | Patch M              | erging                 | Patch M                 | erging                 | Patch M                 | erging                 | Patch Merging       |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $H \vee W$                         |                      |                        |                         |                        |                         |                        |                     | Inner                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stage 4        |                                    | [D = 320]            | $\lceil C = 20 \rceil$ | D = 512                 | $\lceil C = 32 \rceil$ | $\lceil D = 768 \rceil$ | $\lceil C = 48 \rceil$ | [D = 1024]          | $\lceil C = 64 \rceil$ |  |
| Head $1 \times 1$ Pooling & FC         Pooling & FC         Pooling & FC           Input resolution $192 \times 192$ $256 \times 256$ $256 \times 256$ $256 \times 256$ Parameters (M) $10.6$ $32.0$ $85.0$ $157.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stage 4        | 64 ^ 64                            | $H_o = 8 \times 2$   | $H_i = 4 \times 1$     | $H_o = 16 \times 2$     | $H_i = 8 \times 1$     | $H_o = 16 \times 2$     | $H_i = 8 \times 1$     | $H_o = 16 \times 2$ | $H_i = 8 \times 1$     |  |
| Input resolution         192×192         256×256         256×256           Parameters (M)         10.6         32.0         85.0         157.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                    | R = 1                | R = 1                  | R = 1                   | R = 1                  | R = 1                   | R = 1                  | R = 1               | R = 1                  |  |
| Parameters (M) 10.6 32.0 85.0 157.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Head           | $1 \times 1$                       | Pooling              | & FC                   | Pooling                 | & FC                   | Pooling                 | & FC                   | Pooling & FC        |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Input res      | solution                           | 192×                 | 192                    | 256×                    | 256                    | 256×                    | 256                    | 256×256             |                        |  |
| FLOPs (B) 0.6 3.3 8.2 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Parameters (M) |                                    | 10.                  | 6                      | 32.                     | 0                      | 85.                     | 0                      | 157.0               |                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FLOPs (B)      |                                    | 0.0                  | 5                      | 3.3                     | 3                      | 8.2                     | 2                      | 16.0                |                        |  |

## **Experiments**

#### ImageNet classification

| Model           | Params | FLOPs       | Throughput | Top-1 |  |
|-----------------|--------|-------------|------------|-------|--|
| Model           | (M)    | (B)         | (image/s)  | (%)   |  |
| T2T-ViT-14 [41] | 21.5   | 5.2         | -          | 81.5  |  |
| T2T-ViT-19 [41] | 39.2   | 8.9         | -          | 81.9  |  |
| T2T-ViT-24 [41] | 64.1   | 54.1 14.1 - |            | 82.3  |  |
| PVT-Small [36]  | 24.5   | 3.8         | 820        | 79.8  |  |
| PVT-Medium [36] | 44.2   | 6.7         | 526        | 81.2  |  |
| PVT-Large [36]  | 61.4   | 9.8         | 367        | 81.7  |  |
| PVTv2-B0 [35]   | 3.4    | 0.6         | -          | 70.5  |  |
| PVTv2-B2 [35]   | 25.4   | 4.0         |            | 82.0  |  |
| PVTv2-B4 [35]   | 62.6   | 10.1        | -          | 83.6  |  |
| Swin-T [22]     | 29     | 4.5         | 755        | 81.3  |  |
| Swin-S [22]     | 50     | 8.7         | 437        | 83.0  |  |
| Swin-B [22]     | 88     | 15.4        | 278        | 83.3  |  |
| TNT-S [11]      | 23.8   | 5.2         | 428        | 81.5  |  |
| TNT-S-2 [11]    | 22.4   | 4.7         | 704        | 81.4  |  |
| TNT-B [11]      | 65.6   | 14.1        | 246        | 82.9  |  |
| PyramidTNT-Ti   | 10.6   | 0.6         | 2423       | 75.2  |  |
| PyramidTNT-S    | 32.0   | 3.3         | 721        | 82.0  |  |
| PyramidTNT-M    | 85.0   | 8.2         | 413        | 83.5  |  |
| PyramidTNT-B    | 157.0  | 16.0        | 263        | 84.1  |  |

## COCO object detection

Table 4. Object detection and instance segmentation results on COCO val2017. FLOPs is calculated on 1280×800 input.

| Backbone           |         | Mask R-CNN 1× |           |                   |                   |          |         |      |                      |                        |                 |                      |                      |
|--------------------|---------|---------------|-----------|-------------------|-------------------|----------|---------|------|----------------------|------------------------|-----------------|----------------------|----------------------|
| Dackbone           | # FLOPs | AP            | $AP_{50}$ | $AP_{\mathrm{S}}$ | $AP_{\mathrm{M}}$ | $AP_{L}$ | # FLOPs | APb  | $\mathrm{AP_{50}^b}$ | $\mathrm{AP^{b}_{75}}$ | AP <sup>m</sup> | $\mathrm{AP_{50}^m}$ | $\mathrm{AP^m_{75}}$ |
| ResNet50 [13]      | 239.3G  | 36.3          | 55.3      | 19.3              | 40.0              | 48.8     | 260.1G  | 38.0 | 58.6                 | 41.4                   | 34.4            | 55.1                 | 36.7                 |
| PVT-Small [36]     | 226.5G  | 40.4          | 61.3      | 25.0              | 42.9              | 55.7     | 245.1G  | 40.4 | 62.9                 | 43.8                   | 37.8            | 60.1                 | 40.3                 |
| CycleMLP-B2 [3]    | 230.9G  | 40.6          | 61.4      | 22.9              | 44.4              | 54.5     | 249.5G  | 42.1 | 64.0                 | 45.7                   | 38.9            | 61.2                 | 41.8                 |
| Swin-T [22]        | 244.8G  | 41.5          | 62.1      | 25.1              | 44.9              | 55.5     | 264.0G  | 42.2 | 64.6                 | 46.2                   | 39.1            | 61.6                 | 42.0                 |
| Hire-MLP-Small [8] | 237.6G  | 41.7          | -         | 25.3              | 45.4              | 54.6     | 256.2G  | 42.8 | 65.0                 | 46.7                   | 39.3            | 62.0                 | 42.1                 |
| PyramidTNT-S       | 225.9G  | 42.0          | 63.1      | 25.0              | 44.9              | 57.7     | 255.9G  | 43.4 | 65.3                 | 47.3                   | 39.5            | 62.3                 | 42.2                 |

Table 5. Instance segmentation results on COCO val2017.

| Backbone       |         | Cascade Mask R-CNN 3× |               |                        |          |                      |                      |         |          |               |                      |          |                      |                        |
|----------------|---------|-----------------------|---------------|------------------------|----------|----------------------|----------------------|---------|----------|---------------|----------------------|----------|----------------------|------------------------|
| Backbone       | # FLOPs | $AP^{b}$              | $AP_{50}^{b}$ | $AP_{75}^{\mathrm{b}}$ | $AP^{m}$ | $\mathrm{AP_{50}^m}$ | $\mathrm{AP^m_{75}}$ | # FLOPs | $AP^{b}$ | $AP_{50}^{b}$ | $\mathrm{AP^b_{75}}$ | $AP^{m}$ | $\mathrm{AP_{50}^m}$ | $AP_{75}^{\mathrm{m}}$ |
| ResNet50 [13]  | 260.1G  | 41.0                  | 61.7          | 44.9                   | 37.1     | 58.4                 | 40.1                 | 738.7G  | 46.3     | 64.3          | 50.5                 | 40.1     | 61.7                 | 43.4                   |
| AS-MLP-T [18]  | 260.1G  | 46.0                  | 67.5          | 50.7                   | 41.5     | 64.6                 | 44.5                 | 739.0G  | 50.1     | 68.8          | 54.3                 | 43.5     | 66.3                 | 46.9                   |
| Swin-T [22]    | 264.0G  | 46.0                  | 68.2          | 50.2                   | 41.6     | 65.1                 | 44.8                 | 742.4G  | 50.5     | 69.3          | 54.9                 | 43.7     | 66.6                 | 47.1                   |
| Hire-MLP-S [8] | 256.2G  | 46.2                  | 68.2          | 50.9                   | 42.0     | 65.6                 | 45.3                 | 734.6G  | 50.7     | 69.4          | 55.1                 | 44.2     | 66.9                 | 48.1                   |
| PyramidTNT-S   | 255.9G  | 47.1                  | 68.9          | 51.6                   | 42.2     | 65.8                 | 45.4                 | 794.1G  | 51.0     | 69.7          | 55.3                 | 44.2     | 67.0                 | 48.1                   |