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Abstract

Transformer networks have achieved great progress for
computer vision tasks. Transformer-in-Transformer (TNT)
architecture utilizes inner transformer and outer trans-
former to extract both local and global representations. In
this work, we present new TNT baselines by introducing two
advanced designs: 1) pyramid architecture, and 2) convolu-
tional stem. The new “PyramidTNT” significantly improves
the original TNT by establishing hierarchical representa-
tions. PyramidTNT achieves better performances than the
previous state-of-the-art vision transformers such as Swin
Transformer. We hope this new baseline will be helpful to
the further research and application of vision transformer.
Code is available at ht tps://github.com/huawei—
noah/CV-Backbones.

1. Introduction

Vision transformer is providing a new type of neural net-
work for computer vision. Starting from ViT [6], a series
of works have been proposed to improve the architecture of
vision transformer [4,7,11,22,31,36,45]. PVT [36] intro-
duces pyramid network architecture for vision transformer.
T2T-ViT-14 [41] recursively aggregates neighboring tokens
into one token for extracting local structure and reducing the
number of tokens. TNT [11] utilizes inner transformer and
outer transformer to model word-level and sentence-level
visual representations. Swin Transformer [22] proposes a
hierarchical transformer whose representation is computed
with Shifted windows. With the recent progress, the perfor-
mance of vision transformer shows superiority over convo-
lutional neural network (CNN) [9].

This work establishes improved vision transformer base-
lines based on the TNT [I1] framework. Inspired by
the recent works [36, 38], we introduce two main archi-
tecture modifications: 1) pyramid architecture with grad-
ual decreased resolution to extract multi-scale representa-
tions, and 2) convolutional stem for improving the patchify
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Figure 1. Comparison of TNT and PyramidTNT architectures.

stem and stable training. We also include several other
tricks [26, 35] to further improve the efficiency. The new
transformer is named as PyramidTNT. The experiments on
image classification and object detection demonstrate the
superiority of PyramidTNT. Specifically, PyramidTNT-S
yields 82.0% ImageNet classification top-1 accuracy with
only 3.3B FLOPs, which is significantly better than the
original TNT-S [11] and Swin-T [22]. For COCO detec-
tion, PyramidTNT-S achieves 42.0 mAP with fewer com-
putational cost than othere transformer and MLP detection
models. We hope this new baseline will be helpful to the
further research and application of vision transformer.

2. Related Work

Transformer Backbone. Dosovitskiy et al. [0] firstly in-
troduce the pure transformer architecture [34] to the vision
tasks [27, 39], which splits the input image into multiple
patches and takes each patch as a ‘word’ in natural lan-
guage. In [34], extremely large training datasets (e.g., JFT-
300M and ImageNet-21k) are usually required for high per-
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Table 1. Network architectures of PyramidTNT. Three instantiations with different complexity including tiny (Ti), small (S), middle (M)
and base (B) versions are presented. The expansion ratio of MLP module is set as 4 by default. H, and H; denote the number of heads in
outer transformer and inner transformer. R is the reduction ratio of the LSRA.

Stage Output size PyramidTNT-Ti PyramidTNT-S PyramidTNT-M PyramidTNT-B
Stem % X % Convx5 Convx5 Convx5 Convx5
Outer Inner Outer Inner Outer Inner Outer Inner
Stage 1 H W |:D = 80:| [C =51 [D = 128] [C =8T D = 192] [C = 12] I:D = 256:| [C = 16]
8 H, =2]| x2 H; =1|x1 H,=4|x2||H; =2]| x1 H, =4 | xX2||H; =2]| x1 H, =4 | x2 H; =2|x1
R=4 | R=1] L R=4 | | R=1] | R=4 | Ll R=1 ] R=4 | R=1 |
Downsample % X % Patch Merging Patch Merging Patch Merging Patch Merging
Outer Inner Outer Inner Outer Inner Outer Inner
Stage 2 H W [D = 1607 [C = 10] [D = 2567 [C = 16] [D = 384] [C = 24] D = 512:| [C = 32]
16 16 H, =4 |x6||H; =2|x1 H,=8 |x8||H; =4|x2|| H, =8 | X8| |H; =4 | x2| | H, =8 | X10| | H; = 4| x2
Ll R=2 | lR=1] L R=2 | lR=1] |l R=2 | lR=1] L R=2 lR=1]
Downsample % X 3—‘/‘; Patch Merging Patch Merging Patch Merging Patch Merging
Outer Inner Outer Inner Outer Inner Outer Inner
Stage 3 H W [D = 320 [C = 20] [D = 512] [C = 32] D = 768] [C = 48] D = 1024:| [C = 64]
32 32 H,=8 |x3||H; =4|x1||H, =16 | x4| |H; =8| x1| |H, = 16| x6| | H; =8| x1 H, =16 | x6| |H; =8| x1
L R=1 | | R=1 | L R=1 ] | R=1 | | R=1 | L R=1] R=1 | R=1 |
Downsample % X % Patch Merging Patch Merging Patch Merging Patch Merging
Outer Inner Outer Inner Outer Inner Outer Inner
Stage 4 H W [D = 3207 [C = 20] [D = 512] [C = 32] [D = 768 [C = 48] D = 1024:| [C = 64]
64 64 H,=8 |x2||H; =4|x1||H, =16 | x2| |H; =8| x1||H, =16 | x2| |H; =8| x1|| H, =16 | x2| | H; = 8| x1
Ll R=1 | | R=1 | L R=1 | | R=1 | | R=1 | Ll R=1 ] |l R=1 | R=1 ]
Head 1x1 Pooling & FC Pooling & FC Pooling & FC Pooling & FC
Input resolution 192x192 256 X256 256 X256 256 %256
Parameters (M) 10.6 32.0 85.0 157.0
FLOPs (B) 0.6 33 8.2 16.0

formance. Touvron et al. [33] improve the training recipe
and train vision transformers from scratch on ImageNet.
Wang et al. [36] introduce a hierarchical architecture, which
reduce the sequence length of transformer as the network
deepens, which can extract the high-level semantic infor-
mation and reduce the computational cost. Liu et al. [22]
restrict the self-attention operation in non-overlapping local
windows and realize the cross-window connection by shift-
ing these windows. Wu et al. [37] introduce convolutional
projections into vision transformers to bring the desirable
properties of CNNs. To capture both global and local in-
formation in an image, Han ef al. [11] present a nested ar-
chitecture by further dividing each patch into smaller ones,
which enhances the representation ability significantly. No-
tice that this nested design is a general methodology, which
can be also combined with the hierarchical architectures
(e.g., [ ]) for further improving performance.

)

MLP Backbone. Tolstikhin et al. [32] construct a MLP-
Mixer model by only stacking multi-layer perceptrons
(MLPs), showing that neither convolutions and attention
are necessary for good performance. Channel-mixing and
token-mixing MLPs are two core blocks, which extract fea-
tures of each token (patch) and aggregate information from
different tokens, respectively. Recently, various variants are
developed to achieve a better trade-off between accuracy
and computational cost. For example, shift operation is in-
troduced in S2-MLP [40] and AS-MLP [18] to exchange in-
formation across tokens. CycleMLP [3] introduces a cycle

FC operation dealing with various image scales and has lin-
ear computational complexity to image size. Hire-MLP [§]
presents a hierarchical rearrangement operation, where the
inner-region rearrangement and cross-region rearrangement
capture local information and global context, respectively.
Wave-MLP [30] takes each tokens as a wave and model the
relationship between different tokens by considering their
amplitude and phase information simultaneously.

3. Method

Convolutional Stem. Given a input image X € R7*W,

vanilla TNT model first split the image into a number of
patches and further view each patch as a sequence of sub-
patches. A linear layer is applied to project the sub-patch
into a visual word vector (a.k.a., token). These visual words
are concatenated and transformed into a visual sentence
vector. Xiao et al. [38] find that using several convolu-
tions as stem in ViT increases optimization stability and
also improves the performance. Based on the observation,
we construct a convolutional stem for PyramidTNT. A stack
of 3x3 convolutions is utilized to produce visual words
Y € R%*%%C where C is the visual word dimension.
Similarly, we can obtain visual sentences Z € R& X% xD
where D is the visual sentence dimension. The word-
level and sentence-level position encodings are added on
visual words and sentences respectively, as in the original
TNT [I1].



Pyramid Architecture. The original TNT network main-
tains the same number of tokens in every block, follow-
ing ViT [6]. The numbers of visual words and visual sen-

Table 3. ImageNet-1K classification results of representative
CNN, MLP and transformer models. Following [22, 33], the
throughput is measured on an NVIDIA V100 GPU and PyTorch.

tences are kept unchanged from bottom to top. Inspired by Model Params | FLOPs T}}TOUghPUt Top-1
PVT [36], we construct four stages with different number M) (B) | (image/s) | (%)

of tokens for TNT, as shown in Figure 1 (b). For the four CNN
. . H w ResNet-50 [13,41] 25.6 4.1 1226 79.1

stages, the spatial shape of visual words are set as 5 X =5, ResNet-

I woH W o W . . esNet-101 [13,41] 44.7 7.9 753 79.9
T X 4 g X g and g5 x §g. The spatial shape of vi- ResNet-152 [13,41] 602 | 115 526 | 80.8
sual sentences are set as % X %, % X %, 3% X 3%, and EfficientNet-B1 [29] 78 0.7 1662 79.1
6% X g. The downsample operation is implemented using EfficientNet-B2 [29] 9.2 1.0 1255 80.1
a convolution with stride 2. Each stage is composed by sev- EfficientNet-B3 [29] 12 1.3 732 81.6
eral TNT blocks, and the TNT block operates on word-level EfficientNet-B4 [29] 19 4.2 349 82.9
and sentence-level features as described in [ 1 1]. Finally, the S-GhostNet-B1 [10,21]| 16.2 0.67 - 80.9
output visual sentences are fused into a vector as the image S-GhostNet-B4 [10,21]| 329 | 44 - 84.3
representation using the global average pooling operation. ConvNeXt-T [23] 29 4.5 775 82.1
ConvNeXt-S [23] 50 8.7 447 83.1
ConvNeXt-B [23] 89 15.4 292 83.8

Other Tricks. In apart from the network architecture MLP
modification, several advanced tricks for vision transformer AS-MLP-T [18] 28 44 862 81.3
are also adopted. Relative position encoding [26] is added AS-MLP-S [14] 20 8.5 473 83.1
on self-attention module to better represent relative posi- AS-MLP-B [ 18] 88 152 308 83.3
. . . . . CycleMLP-B2 [3] 27 3.9 635 81.6
tion between'tok.er.ls. Lmear spatial reduction attention CycleMLP-B3 [3] 38 6.9 371 82 4
(LSRA) [35] is utilized in the first two stages to reduce the CycleMLP-B4 [3] 52 10.1 259 83.0
computation cost of self-attention for long sequence. Hire-MLP-Small [3] 33 42 307 821
Hire-MLP-Base [8] 58 8.1 441 83.2
4. Experiment Hire-MLP-Large [#] 96 | 13.4 290 83.8
Wave-MLP-T [30] 17 2.4 1208 80.6
4.1. Image Classification Wave-MLP-S [30] 30 4.5 720 82.6
Wave-MLP-M [30] 44 7.9 413 83.4

Table 2. Training hyperparameters for ImageNet-1K. Transformer

PyramidTNT Ti S M B DeiT-Ti [6,33] 5 1.3 2536 722
Epochs 300 DeiT-S [6,33] 22 4.6 940 79.8
Batch size 1024 DeiT-B [6, 33] 86 17.6 292 81.8
Optimizer AdamW [24] T2T-ViT-14 [41] 21.5 5.2 - 81.5
Start learning rate (LR) le-3 T2T-ViT-19 [41] 39.2 8.9 - 81.9
LR decay Cosine T2T-ViT-24 [41] 64.1 14.1 - 82.3
Warmup epochs 20 PVT-Small [36] 245 | 3.8 820 79.8
Weight decay 0.05 PVT-Medium [36] 42 | 67 526 81.2
Label smoothing [2§] 0.1 PVT-Large [36] 614 | 9.8 367 81.7
Drop path [17] 01 01 015 03 PVTv2-BO [35] 34 0.6 - 70.5
Repeated augment [ 15] v PVTV2-B2 [35] 25.4 4.0 - 82.0
RandAugment [5] v PVTv2-B4 [35] 62.6 | 10.1 - 83.6
Mixup prob. [43] 0.8 Swin-T [22] 29 45 755 81.3
Cutmix prob. [42] 1.0 Swin-S [22] 50 8.7 437 83.0
Erasing prob. [44] 0.25 Swin-B [22] 88 15.4 278 83.3
Exponential moving average 0.99996 TNT-S [11] 738 390 428 815
TNT-S-2 [11] 224 4.7 704 81.4
TNT-B [11] 65.6 14.1 246 82.9
Settings. We conduct image classification experiments on Pyramid TNT-Ti 106 | 06 2423 75.2
the large-scale ImageNet-1K dataset [25]. ImageNet-1K PyramidTNT—S 320 33 721 82.0
consists of about 1.28M training images and 50K valida- Pyramid TNT-M 850 | 82 413 83.5
tion images belonging to 1,000 classes. We utilize the same Pyramid TNT B 1570 | 160 263 84.1

training strategy as in DeiT [33] and TNT [1 1], as described
in Table 2. All PyramidTNT models are implemented using
PyTorch and trained on 8 NVIDIA V100 GPUs.

Results. We show the ImageNet-1K classification results
in Table 3. Compared to the original TNT, PyramidTNT



Table 4. Object detection and instance segmentation results on COCO val2017. FLOPs is calculated on 1280x 800 input.

Backbone RetinaNet 1 x Mask R-CNN 1 x
#FLOPs | AP APso | APs APy APp | #FLOPs | AP® AP2, APR. [ AP™ AP AP%
ResNet50 [13] 2393G | 363 553 | 193 40.0 48.8| 260.1G |38.0 586 414 | 344 551 36.7
PVT-Small [36] 226.5G | 404 61.3 |25.0 429 557 | 245.1G | 404 629 438 | 37.8 60.1 403
CycleMLP-B2 [3] 2309G |40.6 61.4 |229 444 545 | 249.5G |42.1 640 457 | 389 612 418
Swin-T [22] 2448G | 41.5 62.1 |25.1 449 555 | 264.0G |422 64.6 462 |39.1 61.6 42.0
Hire-MLP-Small [8] | 237.6G | 41.7 - 253 454 54.6| 256.2G |42.8 65.0 46.7 |393 620 42.1
PyramidTNT-S 2259G | 42.0 63.1 |25.0 449 57.7| 2559G |[434 653 473|395 623 422
Table 5. Instance segmentation results on COCO val2017.
Backbone Mask R-CNN 3 x Cascade Mask R-CNN 3 x
#FLOPs | AP® APY, APP. [AP™ APZ, APY [#FLOPs|AP® APY, APR [AP™ APY, APHL
ResNet50 [13] 260.1G [41.0 61.7 449 |37.1 584 40.1 | 738.7G | 463 643 50.5 |40.1 61.7 434
AS-MLP-T [18] | 260.1G |46.0 67.5 50.7 | 41.5 64.6 445 | 739.0G |50.1 68.8 54.3 |435 663 469
Swin-T [22] 264.0G [46.0 682 50.2 |41.6 65.1 448 | 7424G |50.5 693 549|437 66.6 47.1
Hire-MLP-S [8] | 256.2G |46.2 68.2 509 [42.0 65.6 453 | 734.6G |50.7 694 55.1 | 442 669 48.1
PyramidTNT-S | 2559G [47.1 689 51.6 | 422 658 454 | 794.1G |51.0 69.7 553 | 442 67.0 48.1

achieves much better image classification accuracy. For in-
stance, top-1 accuracy of PyramidTNT-S is 0.5% higher by
using 1.9B fewer FLOPs compared to TNT-S. We also com-
pare PyramidTNT with other representative CNN, MLP and
transformer based models. From the results, we can see that
PyramidTNT is the state-of-the-art vision transformer.

4.2. Object Detection

Settings. The object detection and instance segmentation
experiments are conducted on challenging COCO 2017
benchmark [20], which contains 118K training images and
5K validation images. Following PVT [36] and Swin Trans-
former [22], we consider three typical object detection
frameworks: RetinaNet [19], Mask R-CNN [12] and Cas-
cade Mask R-CNN [1] in mmdetection [2]. Noted that the

four spatial shapes of our PyramidTNT are set as & x W

8 8’
1% X 1—”{3, 3% X 3%, and 654 X %, in contrast to the multi-scale
feature maps produced by typical backbones. To address
this discrepancy, we employ four simple upsample layers
consisted of a stride-two 2x2 transposed convolution, fol-
lowed by BN [16] and GeLU [14], and a stride-one 3x3
convolution, followed by another BN and GeLU. Therefore
our PyramidTNT can generate feature maps with strides of
4, 8, 16, and 32 pixels, w.r.t. the input image.

In order to compare with PVT [36], CycleMLP [3] and
Hire-MLP [8], we conduct experiments based on Reti-
naNet [19] and Mask R-CNN [12]. We use AdamW op-
timizer with a batch size of 2 images per GPU, the initial
learning rate is set to le-4 and divided by 10 at the 8th and
the 11th epoch. The weight decay is set to 0.05. All models
are trained in “1x” schedule (i.e., 12 epochs), with single-
scale strategy on 8 Tesla V100 GPUs. The input image is
resized such that its shorter side has 800 pixels while its

longer side does not exceed 1333 pixels during training.

In addition, we adopt another setting following [8, 18,

], i.e., multi-scale training strategy and “3x” schedule,
based on Mask R-CNN [12] and Cascade Mask R-CNN [1].
During training, the input image is resized such that its
shorter side is between 480 and 800 pixels while its longer
side does not exceed 1333. In the testing phase, the shorter
side of the input image is fixed to 800 pixels. We also
use AdamW optimizer with batch size 16 on 8 Tesla V100
GPUs. The initial learning rate is set to 1e-4 and divided by
10 at the 27th and the 33rd epoch.

Results. Table 4 reports the results of object detection
and instance segmentation under “I1x” training schedule.
PyramidTNT-S significantly outperforms other backbones
on both one-stage and two-stage detectors with similar com-
putational cost. For example, PyramidTNT-S based Reti-
naNet archive 42.0 AP and 57.7 APy, surpassing the mod-
els with Swin Transformer [22] by 0.5 AP and 2.2 APy,
respectively. These results indicate that the pyramid archi-
tecture of TNT can help capture better global information
for large objects. We conjecture that the simple upsample
strategy and smaller spatial shape of PyramidTNT withhold
the APg from a large promotion.

We also report the detection results under multi-
scale strategy and “3x” training schedule in Table 5.
PyramidTNT-S can obtain much better AP® and AP™ than
all other counterparts on Mask R-CNN [12] and Cascade
Mask R-CNN [1], showing its better feature representation
ability. For example, PyramidTNT-S surpasses Hire-MLP-
S [8] by 0.9 APP on Mask R-CNN with fewer FLOPs.
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